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Abstract 

Presented paper discusses new approach to EES parameter determination in frontal car 
crash based on the tensor product of Legendre polynomials. In this paper Subcompact Car 
Class was analyzed using that method. Data that was used to perform analyses introduced 
in this paper was taken from National Highway Traffic Safety Administration (NHTSA) 
database. Such database consists of considerate number of test cases along with various 
information including vehicle mass, crash velocity, chassis deformation etc. New approach 
to the problem of determining the EES parameter was necessary due to the low accuracy 
of the currently used methods. Linear models used up till now for accident reconstruction 
show significant error as the relationship between mass, velocity and deformation cannot be 
well approximated with a flat plane. Proposed model produces better results, because of the 
nonlinear dependence of said parameters. This paper also includes a calculation example 
presenting a comparison of linear and nonlinear method on an actual crash test.
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1. Introduction

The most popular method used currently for precrash velocity determination based on car 
deformation is CRASH3. It bases on linear models and comes from 1980s. It is very simple and 
useful but cause very large error reaching in modern cars up to 30%. During the last 40 years 
car construction has changed significantly. It has developed from body-on-frame to unibody 
construction. Also new materials has been put into use in car construction [5], like plastics, or 
High Strength Steel. It caused that CRASH3 method become outdated, but it is still used due 
to the lack of new methods [22, 25, 36].

CRASH3 [19, 20, 23] method was created when personal computers were developing and not 
in common usage. In the past experts had to calculate dissipated energy manually, so it was 
necessary to use simple methods [2, 18, 24]. Nowadays due to developing computer science 
experts can perform complicated calculation in a quick way [30, 31, 38]. Taking into consid-
eration all facts mentioned above authors started researching the new methods. Authors 
decided to base on nonlinear models, that are more complicated but in most cases signifi-
cantly increase accuracy. In this paper authors present nonlinear method based on tensor 
product of Legendre polynomials, focusing on a particular vehicle class [15, 28, 37]. Presented 
method allowed to calculate EES parameter
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authors started researching the new methods. Authors decided to base on nonlinear models, that are 
more complicated but in most cases significantly increase accuracy. In this paper authors present 
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The EES parameter represents the velocity, that is all absorbed to deformation of the vehicle 
impacting a rigid obstacle [26, 29, 33]. During the impact, there are no elastic deformations, 
therefore the vehicle’s kinetic energy is fully used on the chassis deformation work [11, 32, 
35]. EES parameter along with methods that describe dissipation of energy on after crash car 
movement is used to determine the vehicle velocity right before the impact. Determination 
of pre-crash velocity is a standard procedure in car accident reconstruction [3, 6, 34] and it is 
necessary to define it as precisely as possible. 

In this paper authors assumed that EES parameter of collision depends on two factors, mass 
of the vehicle and its deformation ratio. It is not the first approach to determine new nonlinear 
method. Ideas found in literature concern the inverse system [1, 4]. Those methods deter-
mine the magnitude of coefficient bk, the nonlinear slope. The precrash velocity Vt depends 
on the deformation coefficient Cs [12, 16, 21] through this coefficient. The Cs coefficient is 
used to establish the body deformation, which is an arithmetic average of deformation depth 
in six control points C1 to C6 [9, 10, 14].
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The method is based on orthogonal functions, the Legendre polynomials, over the interval 
of [-1,1]. To apply the Octave software for this approach, Legendre polynomials had to be 
rescaled and renumbered. Once this is done, the next step of least square approximation can 
be applied. Authors based their method on data shared by National Highway Traffic Safety 
Administration (NHTSA) and decided to focused on frontal collisions [13]. Apart from data 
from actual crash tests, NHTSA developed a few simulation models [7, 8, 27] and is constantly 
striving to improve road safety and reduce number of casualties [17]. 

2. Tensor product method description

Firstly, let us assume that there is a set of points (xn,yn,zn)n
N

=1 and function family (hm)m
M

=1 
(two variables functions). To minimize the expression (2), (am)m

M
=1 coefficient has to be found.
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The family of functions (𝐡𝐡𝐡𝐡𝐦𝐦𝐦𝐦)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  will be represented by product tensors of Legendre polynomial. Those 
are considered to be a sequence of polynomials (𝐏𝐏𝐏𝐏𝐦𝐦𝐦𝐦) which can be express the following iterative 
formula: 

∀𝒎𝒎𝒎𝒎≥ 𝟏𝟏𝟏𝟏(𝒎𝒎𝒎𝒎 + 𝟏𝟏𝟏𝟏)𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎+𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) = (𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎 + 𝟏𝟏𝟏𝟏)𝒙𝒙𝒙𝒙 ⋅ 𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) −𝒎𝒎𝒎𝒎𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) (4) 

Where 𝐏𝐏𝐏𝐏𝟎𝟎𝟎𝟎(𝐱𝐱𝐱𝐱) = 𝟏𝟏𝟏𝟏 and 𝐏𝐏𝐏𝐏𝟏𝟏𝟏𝟏(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱, assuming a range of [−𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏]. The first Legendre polynomials take the 
form of: 

Then, the least square approximation problem can be reduced down to a linear one:
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⎛�𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)

𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏

⋯ �𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)𝒉𝒉𝒉𝒉𝑴𝑴𝑴𝑴(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)
𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏
⋮ ⋱ ⋮

�𝒉𝒉𝒉𝒉𝑴𝑴𝑴𝑴(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)
𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏

⋯ �𝒉𝒉𝒉𝒉𝑴𝑴𝑴𝑴(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)𝒉𝒉𝒉𝒉𝑴𝑴𝑴𝑴(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)
𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏 ⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎛

𝒂𝒂𝒂𝒂𝟏𝟏𝟏𝟏

⋮

𝒂𝒂𝒂𝒂𝑴𝑴𝑴𝑴⎠

⎟
⎞

=

⎝

⎜
⎜
⎜
⎛�𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏)

𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏
⋮

�𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏𝒉𝒉𝒉𝒉𝑴𝑴𝑴𝑴(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏)
𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏 ⎠

⎟
⎟
⎟
⎞

 

 

(3) 

The family of functions (𝐡𝐡𝐡𝐡𝐦𝐦𝐦𝐦)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  will be represented by product tensors of Legendre polynomial. Those 
are considered to be a sequence of polynomials (𝐏𝐏𝐏𝐏𝐦𝐦𝐦𝐦) which can be express the following iterative 
formula: 

∀𝒎𝒎𝒎𝒎≥ 𝟏𝟏𝟏𝟏(𝒎𝒎𝒎𝒎 + 𝟏𝟏𝟏𝟏)𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎+𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) = (𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎 + 𝟏𝟏𝟏𝟏)𝒙𝒙𝒙𝒙 ⋅ 𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) −𝒎𝒎𝒎𝒎𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) (4) 

Where 𝐏𝐏𝐏𝐏𝟎𝟎𝟎𝟎(𝐱𝐱𝐱𝐱) = 𝟏𝟏𝟏𝟏 and 𝐏𝐏𝐏𝐏𝟏𝟏𝟏𝟏(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱, assuming a range of [−𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏]. The first Legendre polynomials take the 
form of: 

The family of functions (hm)n
M

=1 will be represented by product tensors of Legendre polyno-
mial. Those are considered to be a sequence of polynomials (Pm) which can be express the 
following iterative formula:
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The EES parameter represents the velocity, that is all absorbed to deformation of the vehicle impacting 
a rigid obstacle [26, 29, 33]. During the impact, there are no elastic deformations, therefore the vehicle’s 
kinetic energy is fully used on the chassis deformation work [11, 32, 35]. EES parameter along with 
methods that describe dissipation of energy on after crash car movement is used to determine the vehicle 
velocity right before the impact. Determination of pre-crash velocity is a standard procedure in car 
accident reconstruction [3, 6, 34] and it is necessary to define it as precisely as possible.  

In this paper authors assumed that EES parameter of collision depends on two factors, mass of the 
vehicle and its deformation ratio. It is not the first approach to determine new nonlinear method. Ideas 
found in literature concern the inverse system [1, 4]. Those methods determine the magnitude of 
coefficient 𝐛𝐛𝐛𝐛𝐤𝐤𝐤𝐤, the nonlinear slope. The precrash velocity 𝐕𝐕𝐕𝐕𝐭𝐭𝐭𝐭 depends on the deformation coefficient 𝐂𝐂𝐂𝐂𝐬𝐬𝐬𝐬 
[12, 16, 21] through this coefficient. The 𝐂𝐂𝐂𝐂𝐬𝐬𝐬𝐬 coefficient is used to establish the body deformation, which 
is an arithmetic average of deformation depth in six control points 𝐂𝐂𝐂𝐂𝟏𝟏𝟏𝟏 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐂𝐂𝐂𝐂𝟔𝟔𝟔𝟔 [9, 10, 14]. 

The method is based on orthogonal functions, the Legendre polynomials, over the interval of [−𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏]. 
To apply the Octave software for this approach, Legendre polynomials had to be rescaled and 
renumbered. Once this is done, the next step of least square approximation can be applied. Authors 
based their method on data shared by National Highway Traffic Safety Administration (NHTSA) and 
decided to focused on frontal collisions [13]. Apart from data from actual crash tests, NHTSA developed 
a few simulation models [7, 8, 27] and is constantly striving to improve road safety and reduce number 
of casualties [17].  

2. Tensor product method description 

Firstly, let us assume that there is a set of points (𝐱𝐱𝐱𝐱𝐧𝐧𝐧𝐧, 𝐲𝐲𝐲𝐲𝐧𝐧𝐧𝐧, 𝐳𝐳𝐳𝐳𝐧𝐧𝐧𝐧)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐍𝐍𝐍𝐍  and function family (𝐡𝐡𝐡𝐡𝐦𝐦𝐦𝐦)𝐦𝐦𝐦𝐦=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  (two 
variables functions). To minimize the expression (2), (𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦)𝐦𝐦𝐦𝐦=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  coefficient has to be found. 

��𝒛𝒛𝒛𝒛𝒏𝒏𝒏𝒏 − � 𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒉𝒉𝒉𝒉(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)
𝑴𝑴𝑴𝑴

𝒎𝒎𝒎𝒎=𝟏𝟏𝟏𝟏

�

𝟐𝟐𝟐𝟐𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏

 (2) 

Then, the least square approximation problem can be reduced down to a linear one: 

⎝

⎜
⎜
⎜
⎛�𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)

𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏

⋯ �𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)𝒉𝒉𝒉𝒉𝑴𝑴𝑴𝑴(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)
𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏
⋮ ⋱ ⋮

�𝒉𝒉𝒉𝒉𝑴𝑴𝑴𝑴(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)
𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏

⋯ �𝒉𝒉𝒉𝒉𝑴𝑴𝑴𝑴(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)𝒉𝒉𝒉𝒉𝑴𝑴𝑴𝑴(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)
𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏 ⎠
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𝒂𝒂𝒂𝒂𝟏𝟏𝟏𝟏

⋮

𝒂𝒂𝒂𝒂𝑴𝑴𝑴𝑴⎠

⎟
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⎝

⎜
⎜
⎜
⎛�𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏)

𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏
⋮
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(3) 

The family of functions (𝐡𝐡𝐡𝐡𝐦𝐦𝐦𝐦)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  will be represented by product tensors of Legendre polynomial. Those 
are considered to be a sequence of polynomials (𝐏𝐏𝐏𝐏𝐦𝐦𝐦𝐦) which can be express the following iterative 
formula: 

∀𝒎𝒎𝒎𝒎≥ 𝟏𝟏𝟏𝟏(𝒎𝒎𝒎𝒎 + 𝟏𝟏𝟏𝟏)𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎+𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) = (𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎 + 𝟏𝟏𝟏𝟏)𝒙𝒙𝒙𝒙 ⋅ 𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) −𝒎𝒎𝒎𝒎𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) (4) 

Where 𝐏𝐏𝐏𝐏𝟎𝟎𝟎𝟎(𝐱𝐱𝐱𝐱) = 𝟏𝟏𝟏𝟏 and 𝐏𝐏𝐏𝐏𝟏𝟏𝟏𝟏(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱, assuming a range of [−𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏]. The first Legendre polynomials take the 
form of: Where P0 (x) = 1 and P1 (x) = x, assuming a range of [-1,1]. The first Legendre polynomials 
take the form of:
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 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎(𝒙𝒙𝒙𝒙) = 𝟏𝟏𝟏𝟏,  𝑷𝑷𝑷𝑷𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) = 𝒙𝒙𝒙𝒙,𝑷𝑷𝑷𝑷𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) =
𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏�,𝑷𝑷𝑷𝑷𝟑𝟑𝟑𝟑(𝒙𝒙𝒙𝒙) =

𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟓𝟓𝟓𝟓𝒙𝒙𝒙𝒙𝟑𝟑𝟑𝟑 − 𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙�, … (5) 

One of the features of Legendre polynomials is orthogonality: 

∀𝒊𝒊𝒊𝒊≠𝒋𝒋𝒋𝒋 � 𝑷𝑷𝑷𝑷𝒊𝒊𝒊𝒊(𝒙𝒙𝒙𝒙)𝑷𝑷𝑷𝑷𝒋𝒋𝒋𝒋(𝒙𝒙𝒙𝒙) d𝒙𝒙𝒙𝒙 = 𝟎𝟎𝟎𝟎
𝟏𝟏𝟏𝟏

−𝟏𝟏𝟏𝟏
 (6) 

It stems from the fact that Legendre polynomials are created though orthogonalization of Gram-Schmidt 
function family {𝟏𝟏𝟏𝟏, 𝐱𝐱𝐱𝐱, 𝐱𝐱𝐱𝐱𝟐𝟐𝟐𝟐,𝐱𝐱𝐱𝐱𝟑𝟑𝟑𝟑, …}. This is an useful feature, since matrix 𝐌𝐌𝐌𝐌 on left hand side (4) is closer 
to diagonal matrix. It also assures a smaller (𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  coefficient error. 

Since Legendre polynomials sequence is renumbered, then 𝐐𝐐𝐐𝐐𝐦𝐦𝐦𝐦 = 𝐏𝐏𝐏𝐏𝐦𝐦𝐦𝐦−𝟏𝟏𝟏𝟏. Then following is obtained: 

∀𝒎𝒎𝒎𝒎≥𝟑𝟑𝟑𝟑(𝒎𝒎𝒎𝒎− 𝟏𝟏𝟏𝟏)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = (𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎− 𝟑𝟑𝟑𝟑)𝒙𝒙𝒙𝒙 ⋅ 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙)− (𝒎𝒎𝒎𝒎− 𝟐𝟐𝟐𝟐)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) (7) 

where 𝐐𝐐𝐐𝐐𝟏𝟏𝟏𝟏(𝐱𝐱𝐱𝐱) = 𝟏𝟏𝟏𝟏 and 𝐐𝐐𝐐𝐐𝟐𝟐𝟐𝟐(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱. If an arbitrary interval [𝐚𝐚𝐚𝐚,𝐛𝐛𝐛𝐛] will be applied, the polynomials need to 
be rescaled and the following relation can be used: 

𝒇𝒇𝒇𝒇𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎 �
𝟐𝟐𝟐𝟐𝒙𝒙𝒙𝒙 − 𝒂𝒂𝒂𝒂 − 𝒃𝒃𝒃𝒃
𝒃𝒃𝒃𝒃 − 𝒂𝒂𝒂𝒂

� (8) 

Tensor product of two function 𝐝𝐝𝐝𝐝 and 𝐠𝐠𝐠𝐠 can be described as: 

𝒉𝒉𝒉𝒉(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇⊗𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙)𝒈𝒈𝒈𝒈(𝒚𝒚𝒚𝒚) (9) 

For this approach, the (𝐝𝐝𝐝𝐝𝐢𝐢𝐢𝐢)𝐢𝐢𝐢𝐢=𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓  and �𝐠𝐠𝐠𝐠𝐣𝐣𝐣𝐣�𝐣𝐣𝐣𝐣=𝟏𝟏𝟏𝟏
𝟓𝟓𝟓𝟓  constitute the first five Legendre polynomials. This results in 

25 tensor products. 

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

3. Results of tensor product method 

The database consists of 210 crash tests. A model was created based on all cases and then validated. 
Authors prepared the algorithm that returns following factors: 

𝑎𝑎𝑎𝑎1 = 14.226162,𝑎𝑎𝑎𝑎2 = 1.227114,𝑎𝑎𝑎𝑎3 = −2.172476,𝑎𝑎𝑎𝑎4 = −1.614918,𝑎𝑎𝑎𝑎5 = −0.963204, 

𝑎𝑎𝑎𝑎6 = 0.222792,𝑎𝑎𝑎𝑎7 = 1.806460,𝑎𝑎𝑎𝑎8 = 2.351278,𝑎𝑎𝑎𝑎9 = 2.623473,𝑎𝑎𝑎𝑎10 = 2.815825, 

𝑎𝑎𝑎𝑎11 = 0.146215,𝑎𝑎𝑎𝑎12 = 0.104217,𝑎𝑎𝑎𝑎13 = −0.735955,𝑎𝑎𝑎𝑎14 = 0.085348,𝑎𝑎𝑎𝑎15 = −1.107606, 

𝑎𝑎𝑎𝑎16 = 0.183727,𝑎𝑎𝑎𝑎17 = −1.515131,𝑎𝑎𝑎𝑎18 = 0.036213,𝑎𝑎𝑎𝑎19 = −2.885660,𝑎𝑎𝑎𝑎20 = −2.175419, 

𝑎𝑎𝑎𝑎21 = 0.330407,𝑎𝑎𝑎𝑎22 = 2.687119,𝑎𝑎𝑎𝑎23 = 1.541317,𝑎𝑎𝑎𝑎24 = 2.447123,𝑎𝑎𝑎𝑎25 = 2.000493 

 

Figure 1 presents the plot of Legendre polynomials tensor product approximation. 

 

One of the features of Legendre polynomials is orthogonality:
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 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎(𝒙𝒙𝒙𝒙) = 𝟏𝟏𝟏𝟏,  𝑷𝑷𝑷𝑷𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) = 𝒙𝒙𝒙𝒙,𝑷𝑷𝑷𝑷𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) =
𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏�,𝑷𝑷𝑷𝑷𝟑𝟑𝟑𝟑(𝒙𝒙𝒙𝒙) =

𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟓𝟓𝟓𝟓𝒙𝒙𝒙𝒙𝟑𝟑𝟑𝟑 − 𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙�, … (5) 

One of the features of Legendre polynomials is orthogonality: 

∀𝒊𝒊𝒊𝒊≠𝒋𝒋𝒋𝒋 � 𝑷𝑷𝑷𝑷𝒊𝒊𝒊𝒊(𝒙𝒙𝒙𝒙)𝑷𝑷𝑷𝑷𝒋𝒋𝒋𝒋(𝒙𝒙𝒙𝒙) d𝒙𝒙𝒙𝒙 = 𝟎𝟎𝟎𝟎
𝟏𝟏𝟏𝟏

−𝟏𝟏𝟏𝟏
 (6) 

It stems from the fact that Legendre polynomials are created though orthogonalization of Gram-Schmidt 
function family {𝟏𝟏𝟏𝟏, 𝐱𝐱𝐱𝐱, 𝐱𝐱𝐱𝐱𝟐𝟐𝟐𝟐,𝐱𝐱𝐱𝐱𝟑𝟑𝟑𝟑, …}. This is an useful feature, since matrix 𝐌𝐌𝐌𝐌 on left hand side (4) is closer 
to diagonal matrix. It also assures a smaller (𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  coefficient error. 

Since Legendre polynomials sequence is renumbered, then 𝐐𝐐𝐐𝐐𝐦𝐦𝐦𝐦 = 𝐏𝐏𝐏𝐏𝐦𝐦𝐦𝐦−𝟏𝟏𝟏𝟏. Then following is obtained: 

∀𝒎𝒎𝒎𝒎≥𝟑𝟑𝟑𝟑(𝒎𝒎𝒎𝒎− 𝟏𝟏𝟏𝟏)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = (𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎− 𝟑𝟑𝟑𝟑)𝒙𝒙𝒙𝒙 ⋅ 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙)− (𝒎𝒎𝒎𝒎− 𝟐𝟐𝟐𝟐)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) (7) 

where 𝐐𝐐𝐐𝐐𝟏𝟏𝟏𝟏(𝐱𝐱𝐱𝐱) = 𝟏𝟏𝟏𝟏 and 𝐐𝐐𝐐𝐐𝟐𝟐𝟐𝟐(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱. If an arbitrary interval [𝐚𝐚𝐚𝐚,𝐛𝐛𝐛𝐛] will be applied, the polynomials need to 
be rescaled and the following relation can be used: 

𝒇𝒇𝒇𝒇𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎 �
𝟐𝟐𝟐𝟐𝒙𝒙𝒙𝒙 − 𝒂𝒂𝒂𝒂 − 𝒃𝒃𝒃𝒃
𝒃𝒃𝒃𝒃 − 𝒂𝒂𝒂𝒂

� (8) 

Tensor product of two function 𝐝𝐝𝐝𝐝 and 𝐠𝐠𝐠𝐠 can be described as: 

𝒉𝒉𝒉𝒉(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇⊗𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙)𝒈𝒈𝒈𝒈(𝒚𝒚𝒚𝒚) (9) 

For this approach, the (𝐝𝐝𝐝𝐝𝐢𝐢𝐢𝐢)𝐢𝐢𝐢𝐢=𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓  and �𝐠𝐠𝐠𝐠𝐣𝐣𝐣𝐣�𝐣𝐣𝐣𝐣=𝟏𝟏𝟏𝟏
𝟓𝟓𝟓𝟓  constitute the first five Legendre polynomials. This results in 

25 tensor products. 

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

3. Results of tensor product method 

The database consists of 210 crash tests. A model was created based on all cases and then validated. 
Authors prepared the algorithm that returns following factors: 

𝑎𝑎𝑎𝑎1 = 14.226162,𝑎𝑎𝑎𝑎2 = 1.227114,𝑎𝑎𝑎𝑎3 = −2.172476,𝑎𝑎𝑎𝑎4 = −1.614918,𝑎𝑎𝑎𝑎5 = −0.963204, 

𝑎𝑎𝑎𝑎6 = 0.222792,𝑎𝑎𝑎𝑎7 = 1.806460,𝑎𝑎𝑎𝑎8 = 2.351278,𝑎𝑎𝑎𝑎9 = 2.623473,𝑎𝑎𝑎𝑎10 = 2.815825, 

𝑎𝑎𝑎𝑎11 = 0.146215,𝑎𝑎𝑎𝑎12 = 0.104217,𝑎𝑎𝑎𝑎13 = −0.735955,𝑎𝑎𝑎𝑎14 = 0.085348,𝑎𝑎𝑎𝑎15 = −1.107606, 

𝑎𝑎𝑎𝑎16 = 0.183727,𝑎𝑎𝑎𝑎17 = −1.515131,𝑎𝑎𝑎𝑎18 = 0.036213,𝑎𝑎𝑎𝑎19 = −2.885660,𝑎𝑎𝑎𝑎20 = −2.175419, 

𝑎𝑎𝑎𝑎21 = 0.330407,𝑎𝑎𝑎𝑎22 = 2.687119,𝑎𝑎𝑎𝑎23 = 1.541317,𝑎𝑎𝑎𝑎24 = 2.447123,𝑎𝑎𝑎𝑎25 = 2.000493 

 

Figure 1 presents the plot of Legendre polynomials tensor product approximation. 
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It stems from the fact that Legendre polynomials are created though orthogonalization 
of Gram-Schmidt function family {1, x, x2, x3, …}. This is an useful feature, since matrix M 
on left hand side (4) is closer to diagonal matrix. It also assures a smaller (am)n

M
=1 coefficient 

error.

Since Legendre polynomials sequence is renumbered, then Qm = Pm-1. Then following 
is obtained:
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 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎(𝒙𝒙𝒙𝒙) = 𝟏𝟏𝟏𝟏,  𝑷𝑷𝑷𝑷𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) = 𝒙𝒙𝒙𝒙,𝑷𝑷𝑷𝑷𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) =
𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏�,𝑷𝑷𝑷𝑷𝟑𝟑𝟑𝟑(𝒙𝒙𝒙𝒙) =

𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟓𝟓𝟓𝟓𝒙𝒙𝒙𝒙𝟑𝟑𝟑𝟑 − 𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙�, … (5) 

One of the features of Legendre polynomials is orthogonality: 

∀𝒊𝒊𝒊𝒊≠𝒋𝒋𝒋𝒋 � 𝑷𝑷𝑷𝑷𝒊𝒊𝒊𝒊(𝒙𝒙𝒙𝒙)𝑷𝑷𝑷𝑷𝒋𝒋𝒋𝒋(𝒙𝒙𝒙𝒙) d𝒙𝒙𝒙𝒙 = 𝟎𝟎𝟎𝟎
𝟏𝟏𝟏𝟏

−𝟏𝟏𝟏𝟏
 (6) 

It stems from the fact that Legendre polynomials are created though orthogonalization of Gram-Schmidt 
function family {𝟏𝟏𝟏𝟏, 𝐱𝐱𝐱𝐱, 𝐱𝐱𝐱𝐱𝟐𝟐𝟐𝟐,𝐱𝐱𝐱𝐱𝟑𝟑𝟑𝟑, …}. This is an useful feature, since matrix 𝐌𝐌𝐌𝐌 on left hand side (4) is closer 
to diagonal matrix. It also assures a smaller (𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  coefficient error. 

Since Legendre polynomials sequence is renumbered, then 𝐐𝐐𝐐𝐐𝐦𝐦𝐦𝐦 = 𝐏𝐏𝐏𝐏𝐦𝐦𝐦𝐦−𝟏𝟏𝟏𝟏. Then following is obtained: 

∀𝒎𝒎𝒎𝒎≥𝟑𝟑𝟑𝟑(𝒎𝒎𝒎𝒎− 𝟏𝟏𝟏𝟏)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = (𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎− 𝟑𝟑𝟑𝟑)𝒙𝒙𝒙𝒙 ⋅ 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙)− (𝒎𝒎𝒎𝒎− 𝟐𝟐𝟐𝟐)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) (7) 

where 𝐐𝐐𝐐𝐐𝟏𝟏𝟏𝟏(𝐱𝐱𝐱𝐱) = 𝟏𝟏𝟏𝟏 and 𝐐𝐐𝐐𝐐𝟐𝟐𝟐𝟐(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱. If an arbitrary interval [𝐚𝐚𝐚𝐚,𝐛𝐛𝐛𝐛] will be applied, the polynomials need to 
be rescaled and the following relation can be used: 

𝒇𝒇𝒇𝒇𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎 �
𝟐𝟐𝟐𝟐𝒙𝒙𝒙𝒙 − 𝒂𝒂𝒂𝒂 − 𝒃𝒃𝒃𝒃
𝒃𝒃𝒃𝒃 − 𝒂𝒂𝒂𝒂

� (8) 

Tensor product of two function 𝐝𝐝𝐝𝐝 and 𝐠𝐠𝐠𝐠 can be described as: 

𝒉𝒉𝒉𝒉(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇⊗𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙)𝒈𝒈𝒈𝒈(𝒚𝒚𝒚𝒚) (9) 

For this approach, the (𝐝𝐝𝐝𝐝𝐢𝐢𝐢𝐢)𝐢𝐢𝐢𝐢=𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓  and �𝐠𝐠𝐠𝐠𝐣𝐣𝐣𝐣�𝐣𝐣𝐣𝐣=𝟏𝟏𝟏𝟏
𝟓𝟓𝟓𝟓  constitute the first five Legendre polynomials. This results in 

25 tensor products. 

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

3. Results of tensor product method 

The database consists of 210 crash tests. A model was created based on all cases and then validated. 
Authors prepared the algorithm that returns following factors: 

𝑎𝑎𝑎𝑎1 = 14.226162,𝑎𝑎𝑎𝑎2 = 1.227114,𝑎𝑎𝑎𝑎3 = −2.172476,𝑎𝑎𝑎𝑎4 = −1.614918,𝑎𝑎𝑎𝑎5 = −0.963204, 

𝑎𝑎𝑎𝑎6 = 0.222792,𝑎𝑎𝑎𝑎7 = 1.806460,𝑎𝑎𝑎𝑎8 = 2.351278,𝑎𝑎𝑎𝑎9 = 2.623473,𝑎𝑎𝑎𝑎10 = 2.815825, 

𝑎𝑎𝑎𝑎11 = 0.146215,𝑎𝑎𝑎𝑎12 = 0.104217,𝑎𝑎𝑎𝑎13 = −0.735955,𝑎𝑎𝑎𝑎14 = 0.085348,𝑎𝑎𝑎𝑎15 = −1.107606, 

𝑎𝑎𝑎𝑎16 = 0.183727,𝑎𝑎𝑎𝑎17 = −1.515131,𝑎𝑎𝑎𝑎18 = 0.036213,𝑎𝑎𝑎𝑎19 = −2.885660,𝑎𝑎𝑎𝑎20 = −2.175419, 

𝑎𝑎𝑎𝑎21 = 0.330407,𝑎𝑎𝑎𝑎22 = 2.687119,𝑎𝑎𝑎𝑎23 = 1.541317,𝑎𝑎𝑎𝑎24 = 2.447123,𝑎𝑎𝑎𝑎25 = 2.000493 

 

Figure 1 presents the plot of Legendre polynomials tensor product approximation. 

 

where Q1 (x) = 1 and Q2 (x) = x. If an arbitrary interval [a,b] will be applied, the polynomials 
need to be rescaled and the following relation can be used:
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 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎(𝒙𝒙𝒙𝒙) = 𝟏𝟏𝟏𝟏,  𝑷𝑷𝑷𝑷𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) = 𝒙𝒙𝒙𝒙,𝑷𝑷𝑷𝑷𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) =
𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏�,𝑷𝑷𝑷𝑷𝟑𝟑𝟑𝟑(𝒙𝒙𝒙𝒙) =

𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟓𝟓𝟓𝟓𝒙𝒙𝒙𝒙𝟑𝟑𝟑𝟑 − 𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙�, … (5) 

One of the features of Legendre polynomials is orthogonality: 

∀𝒊𝒊𝒊𝒊≠𝒋𝒋𝒋𝒋 � 𝑷𝑷𝑷𝑷𝒊𝒊𝒊𝒊(𝒙𝒙𝒙𝒙)𝑷𝑷𝑷𝑷𝒋𝒋𝒋𝒋(𝒙𝒙𝒙𝒙) d𝒙𝒙𝒙𝒙 = 𝟎𝟎𝟎𝟎
𝟏𝟏𝟏𝟏

−𝟏𝟏𝟏𝟏
 (6) 

It stems from the fact that Legendre polynomials are created though orthogonalization of Gram-Schmidt 
function family {𝟏𝟏𝟏𝟏, 𝐱𝐱𝐱𝐱, 𝐱𝐱𝐱𝐱𝟐𝟐𝟐𝟐,𝐱𝐱𝐱𝐱𝟑𝟑𝟑𝟑, …}. This is an useful feature, since matrix 𝐌𝐌𝐌𝐌 on left hand side (4) is closer 
to diagonal matrix. It also assures a smaller (𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  coefficient error. 

Since Legendre polynomials sequence is renumbered, then 𝐐𝐐𝐐𝐐𝐦𝐦𝐦𝐦 = 𝐏𝐏𝐏𝐏𝐦𝐦𝐦𝐦−𝟏𝟏𝟏𝟏. Then following is obtained: 

∀𝒎𝒎𝒎𝒎≥𝟑𝟑𝟑𝟑(𝒎𝒎𝒎𝒎− 𝟏𝟏𝟏𝟏)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = (𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎− 𝟑𝟑𝟑𝟑)𝒙𝒙𝒙𝒙 ⋅ 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙)− (𝒎𝒎𝒎𝒎− 𝟐𝟐𝟐𝟐)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) (7) 

where 𝐐𝐐𝐐𝐐𝟏𝟏𝟏𝟏(𝐱𝐱𝐱𝐱) = 𝟏𝟏𝟏𝟏 and 𝐐𝐐𝐐𝐐𝟐𝟐𝟐𝟐(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱. If an arbitrary interval [𝐚𝐚𝐚𝐚,𝐛𝐛𝐛𝐛] will be applied, the polynomials need to 
be rescaled and the following relation can be used: 

𝒇𝒇𝒇𝒇𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎 �
𝟐𝟐𝟐𝟐𝒙𝒙𝒙𝒙 − 𝒂𝒂𝒂𝒂 − 𝒃𝒃𝒃𝒃
𝒃𝒃𝒃𝒃 − 𝒂𝒂𝒂𝒂

� (8) 

Tensor product of two function 𝐝𝐝𝐝𝐝 and 𝐠𝐠𝐠𝐠 can be described as: 

𝒉𝒉𝒉𝒉(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇⊗𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙)𝒈𝒈𝒈𝒈(𝒚𝒚𝒚𝒚) (9) 

For this approach, the (𝐝𝐝𝐝𝐝𝐢𝐢𝐢𝐢)𝐢𝐢𝐢𝐢=𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓  and �𝐠𝐠𝐠𝐠𝐣𝐣𝐣𝐣�𝐣𝐣𝐣𝐣=𝟏𝟏𝟏𝟏
𝟓𝟓𝟓𝟓  constitute the first five Legendre polynomials. This results in 

25 tensor products. 

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

3. Results of tensor product method 

The database consists of 210 crash tests. A model was created based on all cases and then validated. 
Authors prepared the algorithm that returns following factors: 

𝑎𝑎𝑎𝑎1 = 14.226162,𝑎𝑎𝑎𝑎2 = 1.227114,𝑎𝑎𝑎𝑎3 = −2.172476,𝑎𝑎𝑎𝑎4 = −1.614918,𝑎𝑎𝑎𝑎5 = −0.963204, 

𝑎𝑎𝑎𝑎6 = 0.222792,𝑎𝑎𝑎𝑎7 = 1.806460,𝑎𝑎𝑎𝑎8 = 2.351278,𝑎𝑎𝑎𝑎9 = 2.623473,𝑎𝑎𝑎𝑎10 = 2.815825, 

𝑎𝑎𝑎𝑎11 = 0.146215,𝑎𝑎𝑎𝑎12 = 0.104217,𝑎𝑎𝑎𝑎13 = −0.735955,𝑎𝑎𝑎𝑎14 = 0.085348,𝑎𝑎𝑎𝑎15 = −1.107606, 

𝑎𝑎𝑎𝑎16 = 0.183727,𝑎𝑎𝑎𝑎17 = −1.515131,𝑎𝑎𝑎𝑎18 = 0.036213,𝑎𝑎𝑎𝑎19 = −2.885660,𝑎𝑎𝑎𝑎20 = −2.175419, 

𝑎𝑎𝑎𝑎21 = 0.330407,𝑎𝑎𝑎𝑎22 = 2.687119,𝑎𝑎𝑎𝑎23 = 1.541317,𝑎𝑎𝑎𝑎24 = 2.447123,𝑎𝑎𝑎𝑎25 = 2.000493 

 

Figure 1 presents the plot of Legendre polynomials tensor product approximation. 

 

Tensor product of two function f and g can be described as:
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 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎(𝒙𝒙𝒙𝒙) = 𝟏𝟏𝟏𝟏,  𝑷𝑷𝑷𝑷𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) = 𝒙𝒙𝒙𝒙,𝑷𝑷𝑷𝑷𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) =
𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏�,𝑷𝑷𝑷𝑷𝟑𝟑𝟑𝟑(𝒙𝒙𝒙𝒙) =

𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟓𝟓𝟓𝟓𝒙𝒙𝒙𝒙𝟑𝟑𝟑𝟑 − 𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙�, … (5) 

One of the features of Legendre polynomials is orthogonality: 

∀𝒊𝒊𝒊𝒊≠𝒋𝒋𝒋𝒋 � 𝑷𝑷𝑷𝑷𝒊𝒊𝒊𝒊(𝒙𝒙𝒙𝒙)𝑷𝑷𝑷𝑷𝒋𝒋𝒋𝒋(𝒙𝒙𝒙𝒙) d𝒙𝒙𝒙𝒙 = 𝟎𝟎𝟎𝟎
𝟏𝟏𝟏𝟏

−𝟏𝟏𝟏𝟏
 (6) 

It stems from the fact that Legendre polynomials are created though orthogonalization of Gram-Schmidt 
function family {𝟏𝟏𝟏𝟏, 𝐱𝐱𝐱𝐱, 𝐱𝐱𝐱𝐱𝟐𝟐𝟐𝟐,𝐱𝐱𝐱𝐱𝟑𝟑𝟑𝟑, …}. This is an useful feature, since matrix 𝐌𝐌𝐌𝐌 on left hand side (4) is closer 
to diagonal matrix. It also assures a smaller (𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  coefficient error. 

Since Legendre polynomials sequence is renumbered, then 𝐐𝐐𝐐𝐐𝐦𝐦𝐦𝐦 = 𝐏𝐏𝐏𝐏𝐦𝐦𝐦𝐦−𝟏𝟏𝟏𝟏. Then following is obtained: 

∀𝒎𝒎𝒎𝒎≥𝟑𝟑𝟑𝟑(𝒎𝒎𝒎𝒎− 𝟏𝟏𝟏𝟏)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = (𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎− 𝟑𝟑𝟑𝟑)𝒙𝒙𝒙𝒙 ⋅ 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙)− (𝒎𝒎𝒎𝒎− 𝟐𝟐𝟐𝟐)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) (7) 

where 𝐐𝐐𝐐𝐐𝟏𝟏𝟏𝟏(𝐱𝐱𝐱𝐱) = 𝟏𝟏𝟏𝟏 and 𝐐𝐐𝐐𝐐𝟐𝟐𝟐𝟐(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱. If an arbitrary interval [𝐚𝐚𝐚𝐚,𝐛𝐛𝐛𝐛] will be applied, the polynomials need to 
be rescaled and the following relation can be used: 

𝒇𝒇𝒇𝒇𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎 �
𝟐𝟐𝟐𝟐𝒙𝒙𝒙𝒙 − 𝒂𝒂𝒂𝒂 − 𝒃𝒃𝒃𝒃
𝒃𝒃𝒃𝒃 − 𝒂𝒂𝒂𝒂

� (8) 

Tensor product of two function 𝐝𝐝𝐝𝐝 and 𝐠𝐠𝐠𝐠 can be described as: 

𝒉𝒉𝒉𝒉(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇⊗𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙)𝒈𝒈𝒈𝒈(𝒚𝒚𝒚𝒚) (9) 

For this approach, the (𝐝𝐝𝐝𝐝𝐢𝐢𝐢𝐢)𝐢𝐢𝐢𝐢=𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓  and �𝐠𝐠𝐠𝐠𝐣𝐣𝐣𝐣�𝐣𝐣𝐣𝐣=𝟏𝟏𝟏𝟏
𝟓𝟓𝟓𝟓  constitute the first five Legendre polynomials. This results in 

25 tensor products. 

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

3. Results of tensor product method 

The database consists of 210 crash tests. A model was created based on all cases and then validated. 
Authors prepared the algorithm that returns following factors: 

𝑎𝑎𝑎𝑎1 = 14.226162,𝑎𝑎𝑎𝑎2 = 1.227114,𝑎𝑎𝑎𝑎3 = −2.172476,𝑎𝑎𝑎𝑎4 = −1.614918,𝑎𝑎𝑎𝑎5 = −0.963204, 

𝑎𝑎𝑎𝑎6 = 0.222792,𝑎𝑎𝑎𝑎7 = 1.806460,𝑎𝑎𝑎𝑎8 = 2.351278,𝑎𝑎𝑎𝑎9 = 2.623473,𝑎𝑎𝑎𝑎10 = 2.815825, 

𝑎𝑎𝑎𝑎11 = 0.146215,𝑎𝑎𝑎𝑎12 = 0.104217,𝑎𝑎𝑎𝑎13 = −0.735955,𝑎𝑎𝑎𝑎14 = 0.085348,𝑎𝑎𝑎𝑎15 = −1.107606, 

𝑎𝑎𝑎𝑎16 = 0.183727,𝑎𝑎𝑎𝑎17 = −1.515131,𝑎𝑎𝑎𝑎18 = 0.036213,𝑎𝑎𝑎𝑎19 = −2.885660,𝑎𝑎𝑎𝑎20 = −2.175419, 

𝑎𝑎𝑎𝑎21 = 0.330407,𝑎𝑎𝑎𝑎22 = 2.687119,𝑎𝑎𝑎𝑎23 = 1.541317,𝑎𝑎𝑎𝑎24 = 2.447123,𝑎𝑎𝑎𝑎25 = 2.000493 

 

Figure 1 presents the plot of Legendre polynomials tensor product approximation. 

 

For this approach, the (fi)i
5
=1 and (gj)j

5
=1 constitute the first five Legendre polynomials. This 

results in 25 tensor products.
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 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎(𝒙𝒙𝒙𝒙) = 𝟏𝟏𝟏𝟏,  𝑷𝑷𝑷𝑷𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) = 𝒙𝒙𝒙𝒙,𝑷𝑷𝑷𝑷𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) =
𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏�,𝑷𝑷𝑷𝑷𝟑𝟑𝟑𝟑(𝒙𝒙𝒙𝒙) =

𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟓𝟓𝟓𝟓𝒙𝒙𝒙𝒙𝟑𝟑𝟑𝟑 − 𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙�, … (5) 

One of the features of Legendre polynomials is orthogonality: 

∀𝒊𝒊𝒊𝒊≠𝒋𝒋𝒋𝒋 � 𝑷𝑷𝑷𝑷𝒊𝒊𝒊𝒊(𝒙𝒙𝒙𝒙)𝑷𝑷𝑷𝑷𝒋𝒋𝒋𝒋(𝒙𝒙𝒙𝒙) d𝒙𝒙𝒙𝒙 = 𝟎𝟎𝟎𝟎
𝟏𝟏𝟏𝟏

−𝟏𝟏𝟏𝟏
 (6) 

It stems from the fact that Legendre polynomials are created though orthogonalization of Gram-Schmidt 
function family {𝟏𝟏𝟏𝟏, 𝐱𝐱𝐱𝐱, 𝐱𝐱𝐱𝐱𝟐𝟐𝟐𝟐,𝐱𝐱𝐱𝐱𝟑𝟑𝟑𝟑, …}. This is an useful feature, since matrix 𝐌𝐌𝐌𝐌 on left hand side (4) is closer 
to diagonal matrix. It also assures a smaller (𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  coefficient error. 

Since Legendre polynomials sequence is renumbered, then 𝐐𝐐𝐐𝐐𝐦𝐦𝐦𝐦 = 𝐏𝐏𝐏𝐏𝐦𝐦𝐦𝐦−𝟏𝟏𝟏𝟏. Then following is obtained: 

∀𝒎𝒎𝒎𝒎≥𝟑𝟑𝟑𝟑(𝒎𝒎𝒎𝒎− 𝟏𝟏𝟏𝟏)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = (𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎− 𝟑𝟑𝟑𝟑)𝒙𝒙𝒙𝒙 ⋅ 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙)− (𝒎𝒎𝒎𝒎− 𝟐𝟐𝟐𝟐)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) (7) 

where 𝐐𝐐𝐐𝐐𝟏𝟏𝟏𝟏(𝐱𝐱𝐱𝐱) = 𝟏𝟏𝟏𝟏 and 𝐐𝐐𝐐𝐐𝟐𝟐𝟐𝟐(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱. If an arbitrary interval [𝐚𝐚𝐚𝐚,𝐛𝐛𝐛𝐛] will be applied, the polynomials need to 
be rescaled and the following relation can be used: 

𝒇𝒇𝒇𝒇𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎 �
𝟐𝟐𝟐𝟐𝒙𝒙𝒙𝒙 − 𝒂𝒂𝒂𝒂 − 𝒃𝒃𝒃𝒃
𝒃𝒃𝒃𝒃 − 𝒂𝒂𝒂𝒂

� (8) 

Tensor product of two function 𝐝𝐝𝐝𝐝 and 𝐠𝐠𝐠𝐠 can be described as: 

𝒉𝒉𝒉𝒉(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇⊗𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙)𝒈𝒈𝒈𝒈(𝒚𝒚𝒚𝒚) (9) 

For this approach, the (𝐝𝐝𝐝𝐝𝐢𝐢𝐢𝐢)𝐢𝐢𝐢𝐢=𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓  and �𝐠𝐠𝐠𝐠𝐣𝐣𝐣𝐣�𝐣𝐣𝐣𝐣=𝟏𝟏𝟏𝟏
𝟓𝟓𝟓𝟓  constitute the first five Legendre polynomials. This results in 

25 tensor products. 

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

3. Results of tensor product method 

The database consists of 210 crash tests. A model was created based on all cases and then validated. 
Authors prepared the algorithm that returns following factors: 

𝑎𝑎𝑎𝑎1 = 14.226162,𝑎𝑎𝑎𝑎2 = 1.227114,𝑎𝑎𝑎𝑎3 = −2.172476,𝑎𝑎𝑎𝑎4 = −1.614918,𝑎𝑎𝑎𝑎5 = −0.963204, 

𝑎𝑎𝑎𝑎6 = 0.222792,𝑎𝑎𝑎𝑎7 = 1.806460,𝑎𝑎𝑎𝑎8 = 2.351278,𝑎𝑎𝑎𝑎9 = 2.623473,𝑎𝑎𝑎𝑎10 = 2.815825, 

𝑎𝑎𝑎𝑎11 = 0.146215,𝑎𝑎𝑎𝑎12 = 0.104217,𝑎𝑎𝑎𝑎13 = −0.735955,𝑎𝑎𝑎𝑎14 = 0.085348,𝑎𝑎𝑎𝑎15 = −1.107606, 

𝑎𝑎𝑎𝑎16 = 0.183727,𝑎𝑎𝑎𝑎17 = −1.515131,𝑎𝑎𝑎𝑎18 = 0.036213,𝑎𝑎𝑎𝑎19 = −2.885660,𝑎𝑎𝑎𝑎20 = −2.175419, 

𝑎𝑎𝑎𝑎21 = 0.330407,𝑎𝑎𝑎𝑎22 = 2.687119,𝑎𝑎𝑎𝑎23 = 1.541317,𝑎𝑎𝑎𝑎24 = 2.447123,𝑎𝑎𝑎𝑎25 = 2.000493 

 

Figure 1 presents the plot of Legendre polynomials tensor product approximation. 

 

3. Results of tensor product method

The database consists of 210 crash tests. A model was created based on all cases and then 
validated. Authors prepared the algorithm that returns following factors:

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 97, No. 3, 2022 
https://doi.org/ 10.14669/AM/155005 

 

 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎(𝒙𝒙𝒙𝒙) = 𝟏𝟏𝟏𝟏,  𝑷𝑷𝑷𝑷𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) = 𝒙𝒙𝒙𝒙,𝑷𝑷𝑷𝑷𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) =
𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏�,𝑷𝑷𝑷𝑷𝟑𝟑𝟑𝟑(𝒙𝒙𝒙𝒙) =

𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐 �
𝟓𝟓𝟓𝟓𝒙𝒙𝒙𝒙𝟑𝟑𝟑𝟑 − 𝟑𝟑𝟑𝟑𝒙𝒙𝒙𝒙�, … (5) 

One of the features of Legendre polynomials is orthogonality: 

∀𝒊𝒊𝒊𝒊≠𝒋𝒋𝒋𝒋 � 𝑷𝑷𝑷𝑷𝒊𝒊𝒊𝒊(𝒙𝒙𝒙𝒙)𝑷𝑷𝑷𝑷𝒋𝒋𝒋𝒋(𝒙𝒙𝒙𝒙) d𝒙𝒙𝒙𝒙 = 𝟎𝟎𝟎𝟎
𝟏𝟏𝟏𝟏

−𝟏𝟏𝟏𝟏
 (6) 

It stems from the fact that Legendre polynomials are created though orthogonalization of Gram-Schmidt 
function family {𝟏𝟏𝟏𝟏, 𝐱𝐱𝐱𝐱, 𝐱𝐱𝐱𝐱𝟐𝟐𝟐𝟐,𝐱𝐱𝐱𝐱𝟑𝟑𝟑𝟑, …}. This is an useful feature, since matrix 𝐌𝐌𝐌𝐌 on left hand side (4) is closer 
to diagonal matrix. It also assures a smaller (𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦)𝐧𝐧𝐧𝐧=𝟏𝟏𝟏𝟏𝐌𝐌𝐌𝐌  coefficient error. 

Since Legendre polynomials sequence is renumbered, then 𝐐𝐐𝐐𝐐𝐦𝐦𝐦𝐦 = 𝐏𝐏𝐏𝐏𝐦𝐦𝐦𝐦−𝟏𝟏𝟏𝟏. Then following is obtained: 

∀𝒎𝒎𝒎𝒎≥𝟑𝟑𝟑𝟑(𝒎𝒎𝒎𝒎− 𝟏𝟏𝟏𝟏)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = (𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎− 𝟑𝟑𝟑𝟑)𝒙𝒙𝒙𝒙 ⋅ 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙)− (𝒎𝒎𝒎𝒎− 𝟐𝟐𝟐𝟐)𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎−𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙) (7) 

where 𝐐𝐐𝐐𝐐𝟏𝟏𝟏𝟏(𝐱𝐱𝐱𝐱) = 𝟏𝟏𝟏𝟏 and 𝐐𝐐𝐐𝐐𝟐𝟐𝟐𝟐(𝐱𝐱𝐱𝐱) = 𝐱𝐱𝐱𝐱. If an arbitrary interval [𝐚𝐚𝐚𝐚,𝐛𝐛𝐛𝐛] will be applied, the polynomials need to 
be rescaled and the following relation can be used: 

𝒇𝒇𝒇𝒇𝒎𝒎𝒎𝒎(𝒙𝒙𝒙𝒙) = 𝑸𝑸𝑸𝑸𝒎𝒎𝒎𝒎 �
𝟐𝟐𝟐𝟐𝒙𝒙𝒙𝒙 − 𝒂𝒂𝒂𝒂 − 𝒃𝒃𝒃𝒃
𝒃𝒃𝒃𝒃 − 𝒂𝒂𝒂𝒂

� (8) 

Tensor product of two function 𝐝𝐝𝐝𝐝 and 𝐠𝐠𝐠𝐠 can be described as: 

𝒉𝒉𝒉𝒉(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇⊗𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚) = 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙)𝒈𝒈𝒈𝒈(𝒚𝒚𝒚𝒚) (9) 

For this approach, the (𝐝𝐝𝐝𝐝𝐢𝐢𝐢𝐢)𝐢𝐢𝐢𝐢=𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓  and �𝐠𝐠𝐠𝐠𝐣𝐣𝐣𝐣�𝐣𝐣𝐣𝐣=𝟏𝟏𝟏𝟏
𝟓𝟓𝟓𝟓  constitute the first five Legendre polynomials. This results in 

25 tensor products. 

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟏𝟏𝟏𝟏 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐 ⊗ 𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟑𝟑𝟑𝟑 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟔𝟔𝟔𝟔 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟕𝟕𝟕𝟕 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟖𝟖𝟖𝟖 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏𝟗𝟗𝟗𝟗 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟎𝟎𝟎𝟎 = 𝒇𝒇𝒇𝒇𝟒𝟒𝟒𝟒 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟏𝟏𝟏𝟏, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟐𝟐𝟐𝟐, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟑𝟑𝟑𝟑, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟒𝟒𝟒𝟒 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟒𝟒𝟒𝟒, 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐𝟓𝟓𝟓𝟓 = 𝒇𝒇𝒇𝒇𝟓𝟓𝟓𝟓 ⊗𝒈𝒈𝒈𝒈𝟓𝟓𝟓𝟓,   

3. Results of tensor product method 

The database consists of 210 crash tests. A model was created based on all cases and then validated. 
Authors prepared the algorithm that returns following factors: 
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𝑎𝑎𝑎𝑎16 = 0.183727,𝑎𝑎𝑎𝑎17 = −1.515131,𝑎𝑎𝑎𝑎18 = 0.036213,𝑎𝑎𝑎𝑎19 = −2.885660,𝑎𝑎𝑎𝑎20 = −2.175419, 

𝑎𝑎𝑎𝑎21 = 0.330407,𝑎𝑎𝑎𝑎22 = 2.687119,𝑎𝑎𝑎𝑎23 = 1.541317,𝑎𝑎𝑎𝑎24 = 2.447123,𝑎𝑎𝑎𝑎25 = 2.000493 

 

Figure 1 presents the plot of Legendre polynomials tensor product approximation. 

 Figure 1 presents the plot of Legendre polynomials tensor product approximation.
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Fig. 1. Tensor product approximation using orthogonal Legendre polynomials

Figure 2 presents the linear approach to approximation of the same database and it shows 
its inferiority towards the nonlinear approach.

Fig. 2. Least square approximation using linear approach

The relative error for nonlinear approach is 5.7711%, as shown in Figure 3, whereas, the linear 
approach reached the value of 6.9180%, as shown in Figure 4. The difference is not very 
significant. It is mainly caused by the size of the car. New car availability to absorption of 
energy during crash is similar to old ones. In other car class like Compact, where the differ-
ence is much more significant, error between nonlinear model and linear model is much 
more visible. 
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Fig. 3. Value of relative error in nonlinear model

 

Fig. 4. Value of relative error in linear model

Finally, a comparison of linear and Legendre approach is presented in Figure 5. It’s easy 
to see from this chart that velocity determined by nonlinear model described in this paper 
is much more accurate than determined by linear ones.
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Fig. 5. Performance of linear and nonlinear models (Legendre tensor product)

Table 1 presents detailed data of Legendre approach for representative group.

Table 1. Detailed numerical values of the inverse method

m Cs Vt
Expected 

linear
Expected 
nonlinear

Linear error
Nonlinear 

error

948 0.167 9.722 12.362 9.793 0.272 0.007

1098 0.396 13.139 13.798 13.562 0.050 0.032

1202 0.606 15.611 15.272 15.328 0.022 0.018

1090 0.343 13.000 13.446 12.814 0.034 0.014

951 0.540 16.056 14.660 15.044 0.087 0.063

1048 0.536 15.833 14.693 14.862 0.072 0.061

1224 0.618 15.694 15.375 15.458 0.020 0.015

1166 0.539 15.611 14.788 15.231 0.053 0.024

1015 0.364 13.333 13.579 13.712 0.018 0.028

1200 0.444 13.194 14.147 14.404 0.072 0.092

1116 0.204 11.111 12.521 11.290 0.127 0.016

1213 0.443 15.556 14.147 14.319 0.091 0.080

1229 0.274 11.083 12.965 12.647 0.170 0.141

1144 0.380 13.250 13.700 13.522 0.034 0.021
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4. Calculation example

Exemplary calculations were made on the basis of the NHTSA crash test result. The method 
of measuring frontal deformation is similar to Crash3 method. Photo of frontal deformation 
is shown in Figure 6.

Fig. 6. Frontal deformation with method of measurements

Table 2 represents measurement of deformation. The mass of tested vehicle according 
to NHTSA report is equal m = 1057 kg

Table 2. Measurements of deformation

C1 C2 C3 C4 C5 C6

181 mm 310 mm 322 mm 312 mm 280 mm 151 mm

Average deformation can be calculated using equation below.
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is shown below. 
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5. Conclusions 

The approach of nonlinear approach to precrash vehicle velocity determination, proposed by the 
Authors, shows promising results. Mean error for Subcompact class is not much better than in linear 
ones, but the biggest advantage is visible in the Figure 5. Velocity determined using nonlinear method 
is much more accurate than in linear ones. The difference is not as significant as in another class 
described in other papers done by the Authors but improvement is visible. What is more, authors intend 
to develop this method by including more factors to decrease the relative error values even further. The 
superiority of the nonlinear approach is evident, especially when the whole spectrum of examined cases 
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as significant as in another class described in other papers done by the Authors but improve-
ment is visible. What is more, authors intend to develop this method by including more 
factors to decrease the relative error values even further. The superiority of the nonlinear 
approach is evident, especially when the whole spectrum of examined cases is taken into 
consideration. After analyzing all classes, authors intend to create a program that will allow 
to easy apply the described methods in practice.

6. Nomenclature

EES Equivalent Energy Speed [m/s]
NHTSA National Highway Traffic Safety Administration 
Cs deformation ratio [m]
C1–C6 deformation coefficients
Lt dent zone width [m]
Vt vehicle speed [m/s]
Wdef work of deformation [J]
bk constant slope factor [m/s/m]
m weight of car [kg]
n  number of cases [-]
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